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INTRODUCTION

In 2005, the DZero Data Reconstruction project 
processed 250 tera-bytes of data on the Grid, using 
1,600 CPU-years of computing cycles in 6 months. 
The large computational task required a high-level of 
refinement of the SAM-Grid system, the integrated 
data, job, and information management infrastructure 
of the RunII experiments at Fermilab. The success of 
the project was in part due to the ability of the SAM-
Grid to adapt to the local configuration of the 
resources and services at the participating sites. A 
key aspect of such adaptation was coordinating the 
resource usage in order to optimize the typical 
access patterns of the DZero reprocessing 
application. Examples of such optimizations include 
database access, data storage access, and worker 
nodes allocation and utilization.

A popular approach to implement resource 
coordination on the grid is developing services that 
understand application requirements and preferences 
in terms of abstract quantities e.g. required CPU 
cycles or data access pattern characteristics. On the 
other hand, as of today, it is still difficult to implement 
real-life resource optimizations using such level of 
abstraction. First, this approach assumes maximum 
knowledge of the resource/service interfaces from the 
users and the applications. Second, it requires a high 
level of maturity for the grid interfaces. To overcome 
these difficulties, the SAM-Grid provides resource 
optimization implementing application-aware grid 
services. For a known application, such services can 
act in concert maximizing the efficiency of the 
resource usage. We  describe what optimizations the 
SAM-Grid framework had to provide to serve the 
DZero reconstruction and montecarlo production. We 
also show how application-aware grid services fulfill 
the task.

Even restricting our system to manage resources for 
montecarlo generation and data reconstruction only, it 
was still a challenge to run efficiently jobs with such 
different characteristics. In order to let the grid organize 
the usage of the resources efficiently, we decided to 
expose details of the applications to the grid.

We present a few examples where the knowledge of the 
application helps the grid optimize the resource utilization. 
We use these examples to show that application-specific 
knowledge helps grid services optimize resources and run 
grid jobs efficiently.

(1) DATABASE ACCESS PROBLEM

Grid jobs submitted to an execution site are split into 
multiple parallel instances of the same application by the 
SAM-Grid grid-to-fabric interface. This typically results in 
dozens to hundreds of jobs starting approximately at the 
same time and, therefore, accessing key resources 
essentially concurrently.

In practice, not all the services have the same degree of 
accessibility. In particular for montecarlo generation, the 
parameters describing what type of physics to generate 
were accessed from a central database, which initially 
responded with a “denial of service” to 40% of the jobs. 
Introducing retrial with randomized exponential back off 
reduced the final job failure rate to 5%. Despite the 
reduced failure rate, grid jobs and their retrials increased 
the load of the database to a point where interactive 
access was extremely inconvenient (minutes per query).

Comparison of different characteristics among three typical computation activities of 
the DZero experiment. The bottom table focuses on the input/output data size. The 

numbers represent the order of magnitude.

OPTIMIZATION PROBLEMS

High energy physics applications have different resource 
utilization requirements. The SAM-Grid meta-computing 
infrastructure is often used to run montecarlo and data 
reconstruction (data filtering) for the DZero experiment at 
Fermilab.

This problem was properly solved by informing the grid of 
the database access characteristics of the montecarlo
application. All the hundreds of jobs submitted by the grid, 
in fact, were parallel replicas of a single grid job and, 
therefore, required access to the same input parameters 
from the database. 

The grid-to-fabric interface was enhanced to perform a 
single database access per grid job, when the job entered 
the site. The information was saved and redistributed to 
the parallel jobs by internal cluster transport mechanisms. 
This solution reduced the “denial of service” failure rate to 
essentially 0% and still maintained a high availability for 
interactive database accesses. 

In conclusion, access to a grid resource (the 
database) was optimized by instructing grid 
components (the grid-to-fabric interface) of the 
characteristics of the application (parallel jobs 
requiring the same input parameters).

(2) DATA STORAGE ACCESS PROBLEM

Different applications have different typical input data 
access patterns. For DZero, data reconstruction 
applications begin data processing when a single input 
file, typically 1 Gigabyte in size, is delivered to the worker 
node. Instead, data merging applications, used in 
production operations to concatenate files typically 200 
Megabytes in size, begin processing when multiple 
“small” input files are delivered to the worker node. 
Optimizing access to the storage resources with such 
different regimes is a concern.

In the SAM-Grid, applications transfer files from storage 
services that maintain queues of data access requests. 
The storage services, in fact, control their load by 
granting access to the data transfer servers a few 
requests at the time. Access to a transfer server is 
granted in the order in which the access request is 
submitted. When reconstruction and merging applications 
use the same data queue to access their input, transfer 
requests for the various input files are interleaved. This 
leads to inefficiencies, because in real life, on a cluster, 
reconstruction jobs are one or two order of magnitude 
more abundant than merging jobs. This means that 
requests for each input file of a merging application is 
interleaved with a dozen input files of reconstruction 
applications. Therefore, before starting processing data, a 
merging application often needs to wait for these multiple 
reconstruction transfers to occur, thus substantially 
increasing its idle time. For a cluster of 900 CPU, this idle 
time is between one and two hours.

This inefficiency can be reduced by instructing the grid of 
the input data access characteristics of the application. 
Knowing the number of required input data files, the data 
storage service can organize requests from 
reconstruction applications in a queue different from the 
requests from merging applications. Thus, a few merging 
applications only compete amongst themselves for file 
access, drastically reducing their idle time. 

In conclusion, as in the previous, example access to 
grid resources (data files) was optimized by 
instructing grid components (the storage service) of 
the characteristics of the application (multiple or 
single input data requirement).

A diagram representing queues of requests for file access. On the left, a 
single queue manages requests from reprocessing jobs (straight lines), 
and merging jobs (dashed and dashed-dotted lines). Reprocessing jobs 
are two orders of magnitude more abundant than merging jobs. Merging 
job 1 needs to access five input files before it can start running (dashed 
lines, bold for clarity). On the right, requests from merging and 
reprocessing jobs are managed by two different queues. If access
requests are granted one at the time, the queue depth for merging job 1 is 
much shorter than in the case of the single queue (left diagram). If the 
data storage server knows the typical data access pattern of the jobs, it 
can optimize access to the data. The SAM-Grid storage elements have 
knowledge of the typical data access patterns of each application.

(3) WORKER NODES ALLOCATION PROBLEM

The grid-to-fabric interface of the SAMGrid submits 
multiple batch jobs for every grid job entering the site. 
How many worker nodes should be allocated for a given 
application? In general, to accomplish the same amount of 
computation for a grid job, the fewer batch jobs are 
submitted, the longer each job runs, and vice versa. There 
is an acceptable range for the running time of a job. Batch 
jobs should not run too long to minimize the probability of 
termination before completion. Jobs are typically 
terminated because they run beyond the maximum wall-
clock time allowed by the local scheduler, or because they 
are evicted due to a higher-priority job entering the 
scheduler, or because of hardware failures. On the other 
hand, batch jobs should not run too short in order to 
maximize the ratio between running time and setup time 
i.e. the time needed to prepare the job environment (in the 
SAM-Grid typically around half an hour).

The “suitable” expected running time is managed by the 
grid controlling the number of worker nodes allocated for 
running the application. It should be noted that 
applications may have additional constraints on the 
number of jobs. These constraints are dictated by 
considerations on ease of bookkeeping and of recovery 
after failures. In any case, the number of worker nodes to 
allocate depends on the type of application. For 
reconstruction applications, the grid-to-fabric interface 
allocates a worker node for every file in the dataset 
specified for the grid job. Given the computational 
requirements of the reconstruction application, this 
approach gives an acceptable running time of a few hours 
on a modern CPU and eases bookkeeping and recovery 
operations. For montecarlo applications, the interface 
computes the number of worker nodes to be allocated by 
dividing the total number of events to be produced as 
specified for the grid job by the “optimal” number of events 
per job. The “optimal” number of events is a parameter 
configured at the site, considering the speed of the 
average CPU at the site, the computational requirements 
of the montecarlo application, and other scheduler 
constraints (maximum allowed wallclock time, etc.).

In conclusion, as in the previous examples, allocation 
of grid resources (worker nodes) is optimized by 
instructing grid components (the grid-to-fabric 
interface) of the characteristics of the application 
(computational requirements of the application and 
other constraints).

(4) MINIMAL RESOURCE IDLE TIME PROBLEM

Grid jobs are often internally composed of interdependent 
tasks. We let the grid manage the order of execution of 
each internal task/job automatically. This automation 
minimizes the idle time between job submissions, thus 
minimizing the idle time of the resources.

In order to decide whether to submit a job, the grid must 
be able to determine whether the jobs on which it depends 
were successfully executed. In general, determining the 
success of a job is a difficult task. In case of complex 
computational activities, success is generally never 
defined only by the exit status of the job. To determine 
whether a montecarlo generation job was successful, for 
example, the grid has to check the number of events 
produced by the job by querying a bookkeeping database 
and compare this number with the number of events 
originally requested. Success is determined by policy: 
typically, if more than 90% of the events have been 
produced, the job is successful. For reconstruction 
applications the success policy is defined differently: 
typically a job is successful only if it has reconstructed all 
the input files, unless subsequent recovery jobs fail twice 
on the same event with the same error, thus exposing a 
corrupted input file. At any rate, having the grid determine 
the success of a job is an application-specific task. 

In conclusion, as in the previous examples, the idle 
time of grid resources is minimized by instructing grid 
components (the job management component) of the 
characteristics of the application (policy defining the
success condition).

CONCLUSIONS

Application-specific knowledge is important in the 
optimization of grid resources. Two approaches are 
possible:
1) Applications communicate their requirements and 
preferences in terms of abstract resource/service-specific 
quantities. This is difficult to achieve as it requires a very 
high level of maturity of the grid interfaces and a thorough 
understanding of application requirements.
2) Applications rely on Application-Aware Grid Services for 
resource optimizations. This is less general but easier to 
implement and extend.

The SAM-Grid used successfully Application-Aware Grid 
Services for grid resource optimization.


